Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2.
نویسندگان
چکیده
In the face of systemic risk factors, certain regions of the arterial vasculature remain relatively resistant to the development of atherosclerotic lesions. The biomechanically distinct environments in these arterial geometries exert a protective influence via certain key functions of the endothelial lining; however, the mechanisms underlying the coordinated regulation of specific mechano-activated transcriptional programs leading to distinct endothelial functional phenotypes have remained elusive. Here, we show that the transcription factor Kruppel-like factor 2 (KLF2) is selectively induced in endothelial cells exposed to a biomechanical stimulus characteristic of atheroprotected regions of the human carotid and that this flow-mediated increase in expression occurs via a MEK5/ERK5/MEF2 signaling pathway. Overexpression and silencing of KLF2 in the context of flow, combined with findings from genome-wide analyses of gene expression, demonstrate that the induction of KLF2 results in the orchestrated regulation of endothelial transcriptional programs controlling inflammation, thrombosis/hemostasis, vascular tone, and blood vessel development. Our data also indicate that KLF2 expression globally modulates IL-1beta-mediated endothelial activation. KLF2 therefore serves as a mechano-activated transcription factor important in the integration of multiple endothelial functions associated with regions of the arterial vasculature that are relatively resistant to atherogenesis.
منابع مشابه
Thioredoxin interacting protein promotes endothelial cell inflammation in response to disturbed flow by increasing leukocyte adhesion and repressing Kruppel-like factor 2.
RATIONALE Endothelial cells (EC) at regions exposed to disturbed flow (d-flow) are predisposed to inflammation and the subsequent development of atherosclerosis. We previously showed that thioredoxin interacting protein (TXNIP) was required for tumor necrosis factor-mediated expression of vascular cell adhesion molecule-1. OBJECTIVE We sought to investigate the role of TXNIP in d-flow-induced...
متن کاملCellular Biology Thioredoxin Interacting Protein Promotes Endothelial Cell Inflammation in Response to Disturbed Flow by Increasing Leukocyte Adhesion and Repressing Kruppel-Like Factor 2
متن کامل
Novel mechanisms of endothelial mechanotransduction.
Atherosclerosis is a focal disease that develops preferentially where nonlaminar, disturbed blood flow occurs, such as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to disturbed flow compared with steady laminar flow. Disturbed flow that occurs in so-called atheroprone areas activates proinflammatory and apoptotic signaling, and this r...
متن کاملSports or statins for atheroprotection? New insight from Kruppel-like factor 2.
Nitric oxide (NO) plays a central role in the control of vascular homeostasis. Adequate NO production stimulated by continuous laminar flow on the endothelial surface, so-called shear stress, prevents endothelial inflammation and development of endothelial dysfunction. Recently, a novel class of mechanosensitive transcription factors has been identified that in endothelial cells transfer shear ...
متن کاملKruppel-like factor 2 as a novel mediator of statin effects in endothelial cells.
BACKGROUND Although 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are known to modulate endothelial function, the transcriptional mechanisms underlying these effects are incompletely understood. We hypothesized that Lung-Kruppel-like factor (LKLF/KLF2), a novel and potent regulator of endothelial gene expression, may mediate the downstream effects of statins. Here we repo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 116 1 شماره
صفحات -
تاریخ انتشار 2006